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Abstract

Turbulence is modelized as a motion due to an ensemble of circular vortex
filaments. By the local isotropic hypothesis of Kolmogoroff this ensemble can
be thought of as a canonical ensemble of classical statistical mechanics. From
this statistics, formulation is made for evaluating the velocity correlation func-
tion and energy spectrum tensors in isotropic turbulence of incompressible fluid.

1. Introduction

In most of practically important phenomena of fluid dynamics, various physical
guantities such as velocity, pressure and temperature can not be determined
uniquely, and fluctuating randomly in space and time, they are called turbulent.
Turbulence has been one of the most difficult and most attractive problems in
fluid dynamics and we have as yet no satisfactory theory of turbulence, though
about forty years have elapsed sience L. Prandtl proposed his mixing-length
theory. This theory can explain the universal logarithmic law near a wall and
has been successfully used in various problems of turbulence due to its simplicity.
These facts show that its physical picture is consistent with the real turbulent
flow.

A new scope in turbulence theory has been opened when G. I. Taylor intro-
duced the method of correlation function in 1935. This theory is a rather mathe-
matical approach. We can obtain the equation of an arbitrary order velocity
correlation temsor and the introduction of some assumption in regard to tensor
of a certain order makes the problem closed and solved. E. Hopf’s functional
equation (E. Hopf, 1952; E. Hopf ef al., 1953) contains the information of corre-
lation functions of all orders and might be said to be the widest generalization
of correlation function method. Though a functional equation is hard to be
solved, it may prove to be useful in the general discussiomn. Recently R. H.
Kraichnan (1960) calculated the nonlinear interaction term by the perturbation
method using graphical technique and succeeded in obtaining the (—5/3) power
law for isotropic turbulence in his latter paper (R. H. Kraichnan, 1965).

There have heen many investigations of turbulence, but almost all of them
are concerned with the homogeneous and isotropic turbulence, excepting W. V.
R. Malkus (1956) who derived the mean velocity distribution of flow between the
parallel plates using the maximum dissipation hypothesis. T. Imamura, W. C.
Meecham and others (1963 and 1968) expanded the velocity field by Wiener-
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Hermite functional, and from the Navier-Stokes equation they got equations
satisfied with its expansion coefficients, and they successfully applied these to
the problem of turbulence decay near a wall.

Thus, the recent trend of research in turbulence is strongly mathematical
and tends to discard the physical entity. The present author thinks that a true
solution of turbulence can not be attained without the understanding of physical
picture of turbulent motion. In the present paper an ensemble of vortex filaments
is adopted as a physical entity which causes turbulence, and is treated by the
method of classical statistical mechanics.

2. Formulation

As is well-known in vector analysis, an arbitrary vector field can be expressed
as a sum of irrotational and rotational vectors. In fluid mechanics the rotational
part is usually the vorticity @ which can be expressed by the velocity vector u
as

Ww=yXU,

where y denotes the gradient operator.

Now, in case of incompressible fluid when the flow tends to zero sufficiently
fast in infinite (i.e. u(ec)=0(R~™), n>3), the velocity at any point in space can
be expressed by the vorticity distribution as

yoOH 3G oF _aH G oF

dy gz ' e w’ " Ty

where 2, y, z are the orthogonal coordinates and u={u, v, w). And
2 _ 1 (€70 .,
(F,G, H)= %'\ Lot

where r is the distance between the point (x,y, z) and the point (x’, ¢’, z’) at
which volume element of integral d«’ is situated and w=(, 5, {) (Lamb, 1932). So
we can determine the velocity field of incompressible fluid at least in principle
if we know the distribution of vorticity in total space. But the introduction
of assumption as to the distribution of vorticity at every point in space is as
difficult as that of velocity distribution and an approach to the turbulence
from the standpoint of vorticity has no merit, and only introducing complexity,
So we do not enter into the vorticity distribution at any point in space, and
we consider vortex filaments. Outside a vortex filament there exists velocity
potential, and the potential caused by an ensemble of vortex filaments becomes
the sum of ihdividual potentials if they are not overlapping, and the problem
is treated as a linear one. Of course, the fundamental feature of turbulence
consists in its nonlinear interaction and this nonlinearity can not be excluded
by any technique of linearization. In fact vortex filaments interact with each
other and are born or dead at every instant and may be in a stationary state.
But as the Lagrangian approach of Navier-Stokes equation gives the linear ap-
proximation higher by an order than that of Eulerian equation (Pierson, 1962),
the linearization of turbulent field making use of vortex filaments is expected to
give a better model than that from Eulerian description.

In the present paper, the interaction of vortex filaments is assumed to be so
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weak that it only exchanges energy and does not create a new filament nor de-
struct other vortex filaments, In another paper we may see the effect of crea-
tion and annihilation property of vortex field. So this approach may well be
said to he a model of turbulence using a solid vortex filament.

As is well.known in hydrodynamics, a vortex filament neither begins nor
ends at any point in space, but forms closed curve or has both ends at the sur-
face of boundary. Of course, if we take account of the property of non-conser-
vation of vortex, this assertion will not apply. And as we consider only the
isotropic turbulence in this paper, all the vortex filaments in the region may well
be assumed to be closed curve. Since the isotropic turbulence exists in the small
region compared with the scale of field, larger vortex filaments with an end at
the surface are thought to have an effect on that small region just like a mean
flow.

Now we assume all the vortex filaments to be closed curves, but the closed
curves have an infinite number of forms and for simplicity we must introduce
some assumption as to the form of closed vortex filaments. First, we assume
that all the vortex filaments are simple ones and do not entangle themselves.
This statement is justified by the decomposability of entangled vortex filaments
into a number of simple curves of filaments (Moffat, 1969). Secondly, we adopt
for a closed curve its simplest form, a circle. This restriction may not give any
serious modification and essential characteristics will be retained.

3. Statistics

As is described above, isotropic turbulence is thought to be an ensemble of
a great number of circular vortex filaments. Behaviors of a system of many
composites are treated by statistical mechanics. Consider a relatively small region
of fluid moving at the velocity of mean flow, where the isotropy is a good ap-
proximation. In this region there are many vortex filaments which interact with
each other, with the mean flow and with larger vortex filaments, and then there
may be created a condition of statistical equilibrium of stationary state. These
statements may be justified by the Kolmogoroff's local isotropy hypothesis and
the interaction may well be thought to be so weak that we should only consider
the exchange of energy of a system of vortex filaments in the small region con-
cerned. Such a system is called in classical statistical mechanics a canonical
ensemble, and the probability of the system in the energy range of 7 to T+dT
is proportional to e#, where § is a constant determined by the absolute temper-
ature of the external field having a very large degree of freedom compared with
the system concerned.

Now the energy T of an ensemble of vortex filaments is

T——'ZF “dsb dsJ'

e o

(1)

where p is the density of the fluid, I"; the strength of i-th vortex, and 7:; denotes
the distance between the point of line integral element ds: of i-th vortex and
that of ds; of j-th vortex. Using this formula, we can calculate any mean value
as an expected value. The constant § is here unknown, but may depend only on
the representative quantity of the flow and can be determined by the comparison
with experimental results. Phase space is composed of the vector in space coordi-
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— nates r; of the center of vortex
filament, the unit vector e;; nor-
mal to the plane of vortex, the
€ radius of circle R, and the
strength [I; of vortex filament,
Now we address ourselves to the
problem of evaluation of energy
of a system and velocity potential
induced by them and the velocity
correlation function.

L 4. Calculation

We rewrite the equation (1)

Fig. 1. Orthogonal coordinates of two vortex fila- as

ments.
_LZ e ol
T dx i#thIJI v

where

T“'J':SS ds;-ds; .
¥ij

We calculate Ti:, since from this form other T%; can be easily inferred. We
take en and e;, on the surface normal to e; such that three unit vectors €1, €,
e;s construct an orthogonal system, and take es, e, ey as orthogonal vectors
fixed in the space. We can write

3 3
eu= > vije, en= >\ qij€o;,

where pi; and g are direction cosines between e and ej, and between e;; and
ey, respectively. Line element dsi can be written in the (e, e, ers) system as

dsi=(—Risin#d#, Ricosfdg, 0).
Using a transformation formula in a vector analysis
3
Ti=ai+ > puxy
i=1

where a=(ai, az, as) denotes the position vector of an origin of a new coordinate
system and in this case a=r;, we get

dsi-ds;=RiR; d dp( A1 sin 0 sin p— A1» sin 8 cos @
— Asi cos # sin o+ Ass cos § cos @) |

where ¢ denotes the angle between e; and the position vector of line integral
element ds;, and Ais the inner product of vector ey; and ey, i.e.

Aij:€1i'82j .
If we denote

r—ri=ru, (2>
we get
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r1a=|r1a|? 4+ B3+ Ra?+ 2R1(Ci1 cos 04 Cia sin )—2Rs(Cu cos g+ Caa sin ¢)
— 2R Rs( A1 €0 6 o8 g+ Auz €08 # sin g+ Agi sin ¢ cos g+ An sind sing) ,
where
C-ij: ris+€ij -
If we assume that two votexes are enough apart so as to be

(m)lm (3)

|ryg]

we can evaluate the line integral to such an approximation as

4—3{C11(C21A52—C52A21)

Tii=(R1Ry)*— E[Z(AHAM — AuAn)— =
|rie] |ris)

—Clz(Cm/—lmezzAu)}} .

Now using the formula of vector analysis, (A4 X B (CxD)=(A-C)YB-D)—
(A-D)B-C), where Ax B denotes the vector product of two vectors A, B, we get

AnAn—AunAn=e-en
and

Cn(CﬂAzz—szAzl)—Cu(CzlAu—C92A11}=—(913-1‘13)(693-r12)+1r12|2(813-323) i
and finally we get the 71 as

Tu=(RiR)*—7 —(es-e’ )+ T (ru-en)ra: ezs)]

3

Iry 1 rs]?

Of course, this form does not depend on the arbitrary quantities e, e, e

and ey, but depends on the strength of vorticity and the relative separation and
mutual direction. Thus the total energy of a system of vortex filaments is

’Jz SIS RR)— i —(en-esm)+-

< |re I

3
|riﬁ(ri1‘ei3)(rz‘j'9j3)} . (4)
Next, we calculate the velocity potential due to an ensemble of vortex fila-
ments. Outside a vortex filament the velocity field can be described by the
velocity potential ¢(r) and be written
o Aif cosd
P 4z \ o

ds’,

where © denotes the angle between the vector r'—r and the surface normal, and
r' the position vector of surface integral element dS’ (Lamb, 1932, §150). As
velocity potential is a linear quantity, we can calculate the velocity potential due
to an ensemble as the sum of individual potential ¢: induced by individual vortex
filament,

§= S
Just as in the previous calculation for energy, we can calculate the velocity
potential due to a circular vortex filament of strength Iy in the approximation

y Rf \3.4- _
l\ lri'| ) <N (5)

as
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(ri’-eq)
[ri'|?

=R

3

where
ri=ri—r. (6)
Now we can compute velocity correlation function in the Same manner as
the evaluation of expected value in statistical mechanics. Velocity correlation

function for two points Rifr—r)y=u:(rusr") can be calculated as follows, where
the overlaid bar denotes the expected value.

_ 9r) ag(r")
o L ax j’

O s

- -éxi_ ax;

R;‘J(l"—l"')

and
HOB)= >} gulrgs(r)
= 3] Pulr)ga(r)+ %:,; bal)pa(r’)

=No(rg(r )+ N(N=1) u(r)ulr’)

where N is the number of vortex filaments. Evaluation of this integral and the
discussion will be given in the next paper.
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