高層建築物の風圧性状に関する研究

著者	牧野 稔, 和泉 正哲, 中原 満雄, 佐藤 卓
雑誌名	防災科学技術総合研究報告
号	29
ページ	135-145
発行年	1972-03-31
URL	http://id.nii.ac.jp/1625/00002664/

551.556.6:699.8:711

2

5

高層建築物の風圧性状に関する研究

建設省建築研究所

Wind Pressure Measurements on Tall Buildings in the Gusty Wind

By

Minoru Makino, Masanori Izumi, Mitsuo Nakahara and Takashi Sato

Building Research Institute, Ministry of Construction, Tokyo

Abstract

Following a brief review of field wind pressure measurements on buildings both in Japan and foreign countries, measured and analyzed data on a Waseda University building (18-storied) are presented as follows:

- 1. Analysis of differences of the wind pressure property between windward and leeward sides.
- 2. Statistical analysis on the relation between the wind pressure and the response of the building.
- 3. The comparison between the wind pressure distribution derived from the wind tunnel test and that derived from the full-scale measurements.

The field tests show some difference from corresponding wind-tunnel tests, though the latter has the 'similarity' problem. The present design-wind loads (replaced static load) are rechecked, and some functions for stochastic analysis are considered. The results show the possibility of the determination of the functions through wind-tunnel tests, provided that the similarity between the models and actual buildings is well satisfied.

	自	次		
序	1 3 5	3. 風洞実験によ	る風圧測定	1 4
1. 髙層建築物における風圧測定	などの	4. 考察		1 4
経過と現状	135	附 各種統計量の	数値計算について	14
2. 早大理学部1号館における風	圧測定 … 136	参 考 文 献	***************************************	14
序		風圧変動,建物の	振動ならびに変形などの挙動	を
近年わが国においても髙層建築	物が順次建設さ	測定し,その性状	を解明しようとするものであ	る。
Ja 7 年 単 1. 4. のよー マ Ja 6 寸は 41 kill	る本質ルルーが、	J. 777 AT AT A	A	

近年わが国においても高層建築物が順次建設される気運となつた。これら市街地の高層化に伴い, 市街地においては、強風時に風向や風速分布がかなり変動することが予測され、建築物に与える影響も.

- 1)構造骨組の設計に関するもの
- ||) 外装材の設計に関するもの
- Ⅲ)居住者の物理的あるいは心理的不安感に感するもの

などが考えられる。

これらの影響は風洞実験のみでは解決できない 点を多く合むので、強風時に実際の建物について、 風圧変動,建物の振動ならびに変形などの挙動を 測定し、その性状を解明しようとするものである。 なお、本研究のうち、早大理工学部1号館に関し ては、早大の松井源吾、永井亮一、風間了他の各 氏、気象研の相馬清二、江口博の各氏、日立エレ ベーター研究塔に関しては、日立製作所・日研の 早瀬俊一郎他の各氏および東日建設コンサルタン トKKの蔵方昭治他の各氏の御協力をいただいた。 ここに関係各位に厚く謝意を表します。

- 1. 高層建築物における風圧測定などの経過と現状
- 1.1 我が国における既往の研究

我が国においては耐風設計の重要性は、昭和9

*元第2.耐震研究室長,工博 **振動研究室長,工博 ***技管

年の室戸台風において、木造の学校校舎の大被害を生じたものが多く、児童生徒に多数の死傷者を見たことより強く認識されるようになつた。この経験は建物の設計上および構造上の改善となつて、以後台風などによる風の被害を少なくするのに役立つた。戦時中は格納庫の設計のために風洞実験が行われ、新たな知見が加えられたが、実測と比較する気運はなかつた。

戦後、建築研究所においては、亀井が実際の各種建物について、自然風中で主として風力係数の測定を行い、風洞の整流中での実験値とかなり差異のあることを示したが、深く追求されずに終った。

最近に至つて、商層建築物が続々建設されるようになると、これらの建築物で風圧の実測を行う 気運が生じ、幾つかの計画が立案され、一部実行 に移され始めている。しかし一方では、高層建築 物周辺での風速の増加と、風の乱れによる障害が 問題とされるようになり、都市開発の観点からも 風の性状を研究しなければならないとする気運も 生じつつある。

1.2 諸外国における既往の研究

高層建築物の風圧性状の実験的な研究は,1940 年頃 Empire State Building について行われ たが、以後戦争の影響のためか実測についての報 告はほとんどない。

1963年に初めて風の構造物に及ぼす影響についての国際会議がイギリスで開催され、実測の重要性が喚起された。そして、1967年のカナダの国際会議では、イギリス、オーストラリヤ、カナダおよびオランダにおける実測結果が報告された。

イギリスにおける研究は一番早く、Newberry は窓ガラスに取り付けられるような薄型の電気抵 抗線歪計を利用した風圧計を開発し、ロンドン市 街で実機を開始し、

- a) 壁面に風が直角に吹くとき,風圧力は風上 面に大きく現われて,風下面には現われない。
- b) 部分的に強い吸引力が作用するのは、長手方向に沿つて浅い角度で風が吹くときで、一秒以下の短いガストになつていて、最大値は風圧係数で-2.5に達する。

等が報告されている。

オーストラリヤでは、メルボルン大学の建物で 3 0 秒以上の長い風のガヌトの影響を解析して、 風洞での模型実験と比較し、風の抵抗係数や力の 作用点は、ほど一致するが、風圧分布はみだれ易 く完全な一致を見ていない。

カナダではモントリオール市の建物での機定結果と境界層風洞での実験とを比較し、風洞実験の有効性を検討し、オランダでは、鉄骨造アパートの柱の歪と、風速記録の長期間の相関より統計的な取扱いの妥当性を検証している。なお、アメリカやホンコンで大規模な実験計画が立案されている。

1.3 高層建築物の風圧測定の問題点

自然風の性状は非常に複雑で、迂遠であるが、 実測にまたねば解明できない問題点が多い。実測 は一般に非常に費用がかさみ、しかも得られるデ ーターが限定され易い欠点があり、能率的でない が、現状では、一歩一歩問題ごとに実測で検討し なければならないのではなかろうか。

2. 早大理工学部 1 号館における風圧測定

2.1 测定方法

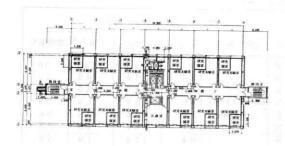


図-1 一般階平面図

写真-1 周囲の状況(鈴木 悠氏撮影)

なお、風圧計は英国の Building Research Station において C.W. Newberry らによつて 開発された B.R.S 型を使用し建物の窓ガラスを 円形の穴あきのものに取り換え、これに風圧計を 取りつけた。風圧計に作用する背面圧を各風圧計について同一にするような処置を行わず、壁面の 差圧を測定することにした。また中央ペントハウス屋上北西の隅に設置されたブロペラ型の風向風速計によつて、風向および風速を測定した。

2.2 測定および解析結果

ここでは昭和44年4月および8月の測定の場合について述べる。4月の強風は,温帯性低気圧

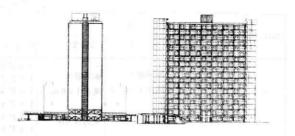


図-2 立 面 図

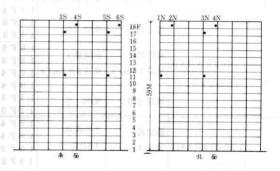


図-3 風圧計の取付位置

に起因したものであり、8月の強風は、台風22号によるものであつた。風圧測定は、上記の強風時のうち、特に風の強い時を選んで行つた。

(1) 風圧記録の考察

表-1には測定日時、風速および風圧力の各種の値について示したが、解析に当つては600秒間の風圧記録を1秒間隔にサンブリングしたものをデーターとした。風圧計は合計11ヶ取付けたが、いろいろな都合で欠測となつたところもある。図ー4は変動風圧力の記録の例であるが、これらの記録によると、いずれの場合にも風下面では風上面に比較して風圧力がかなり小さく、風上面と風下面とでは風圧力の波形には、はつきりとした

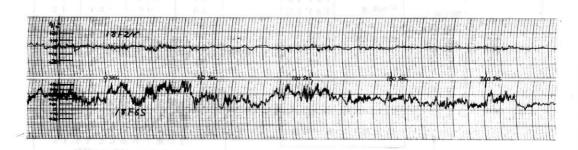


図-4 風圧測定記録 (Data No.4)

表-1 測定記録の一覧表

Data I	Nn sen e	*	ıı±.	風	速	型	産面の 風	に 田 カ	(K g / n	n ^z)	
Data I	MU AND A	10000000000000000000000000000000000000	₽ 7	早 大	気 象 庁	測定位置	記録の長さ	上限値*	平均值	下限値*	標準偏差
	1			瞬間最大	mana a	18F6S		0.	-1.4	-8.0	0.6
_	1969	年4.	月2日		瞬間最大	18F2N	600sec	$1 \ 1.2$	4.4	-0.6	2.2
1	12時	9 s 🗸	. r h	風速 12m∕s	風速17.6 m/s		ĺ	- 0.8	-1.9	-3.6	0.4
	125	0 0 77	Ψ ν			18F4N	{△t=lsec	1 4.0	6.9	1.9	2.3
				風向 NNW	風向NNW	IIF3S	N =600*	1.0	-1.4	-3.8	0.6
						11F3N		1 4.7	8, 1	4,5	2.3
				瞬間最大	瞬間最大	18F6S		3 0.4	12.4	-1.9	5. 9
	1969	年4.	月4日			18F2N 18F4S	600 sec	4.0	0.1	-4.0	1.2
2	15時	184	.rh	風速 19m√s	風速20.0m∕s	18F4N	ſΔt=lsec	3 2.1 4.8	1 5.2 1.6	2.4 -1.6	6.5 0.7
	1 2020	20/,	4 2			11F3S	N =6007	28.7	1 3.3	2.7	5.8
			}	風向 SW	風向 S	11F3N	, W —000>	5.2	0.8	-5.2	1.0
				DOTES DO		18F6S		2 1.9	5.4	-1.5	4. 1
	1969	年4月	18日	瞬間最大	瞬間最大	18F2N	600sec	1.8	-2.2	~ 5.4	1.3
3			1	風速16m∕s	風速23.7m/s	18F4S	△t=lsec	2 2.1	6.0	-1.7	4.9
	13時	5 2 分	10			18F4N	{ N =600≯	-1.0	-2.6	- 5. 6	1.2
				風向 SW	風向 S	11F8S	(N =000)	22.6	7. 0	1.0	4.1
						11F3N		1.9	<u>-1.5</u>	-3.8	1.1
			ŀ	瞬間最大	平均風速	18F4N		0.	-1.5	-8.2	0.4
	19694	∓9 B •	1	風速 15 m∕s	12.0 m/s	18F4S	,	4 3.9	8.4	-17.3	1 2.5
	1 30 3-	нол.	234	Æ Tom√s		18F2N		3.2	-0.5	-5.7	1.5
	12時	より				18F6S	600sec	5 3.5	1 9.5	0.	10.5
4	1			風向 S		17F3N	ſ△t=lsec	3.0	-0.7	-5.7	0.8
_				Ì	seina ta	1.7 F3 S	ζ	5 2.0	21.0	2. 7	10.7
	,		1		瞬間最大	17F5S	N=6007	4.9.2	2 1.1	4.4	1 0.0
					風速30.4m/s	11F3S 11F3N		4 5.0 -0.6	2 2.3 - 4.9	9. 1 1 0. 9	7. 7 1. 0
			i		(12時22分)	11F1N		-0.3	-4.9 -4.1	-10.9 -10.2	1.6
			İ		風向 S	11F1N	ı	3 9.3	1 3.5	2.6	6. 6
					風向 S	18F4N		2 3.9	1.2	-1.6	1.3
			}	瞬間最大		18F4S	,	4 8.2	7. 0	-29.6	1 2.2
	1000	-0 = 0		1		18F2N	240 sec	4.6	1.0	-1.8	1.1
	19694	-ола	000	風速13m∕s		18F6S	240866	5 8.0	1 1.4	-3 3.0	1 5.7
	12時1	8分。	t b	i		17F3S	∫△ t=0,2se c	5 0.7	19.2	4.1	7.7
5	ļ			風向 S		17F5S	N=1200	4 O. I	17.1	3.0	6.6
	1					11F3S		4 0.3	19.8	6.5	6.5
					ĺ	1 1 F 3 N		-0.8	- 4.0	-6.4	0.8
	}		}		Į	11F1N	3	-0.8	- 4.4	-10.2	1.5
					707	11F5S		3 0.9	10.8	0.	4.6
	19694	ER FI	23⊟	瞬間最大	平均風速	17F5S	600sec	-3.0	-1 2.1	-35.5	4.9
в	13時5			風速 l lm∕s	1 4.3 m/s	11F3N 11F1N	(△t=lsec	6.7 8.4	0.7 4.5	2.4	1.4 0.7
	1.0049	<i>4 7</i> 7 •	× ν	風向 S	風向 S SW	11518	¹ N =600⊁	- 3.3	-8.8	2.6	3.2
_	+					18F4N		0.3	0,0	-4.8	
	1				ĺ	18F4S		-2.4	-15.2	-20.7	2.8
			ļ	瞬間最大	平均風速	18F2N		2.3	0.2	-2.5	1.2
	19694	F8月2	38	風速 2 lm/s	10.8 m∕s	18F6S	600sec	1 6.2	3.4	-3.2	2.6
7	,			風向 S	風向SSW	17F3S	ct=lsec	1 6.3	3. 2	-2.4	2.7
	14時5	0分』	ש	ויין אייבי	•	17F5S	N=6007	5.4	-4.1	-24.6	3.7
			ļ		(11F3N		8.2	4.5	2.4	0.7
				J)	llFlN		3.6	-0.1	-8.1	1.0
	1					11F5S		0.	<u> </u>	-12.4	2.2 * + +
	備	考		Г			N ♠		仮順・ F↑ 虱圧力が³		
					早大理工学	部一号館	-ŋ <u>I</u>		、 上限値z		
				T		J Alz	-		の値である		
				煙突	:- <u>-</u>			4	s t はサンフ	プリング間隔	<u> </u>
									N はサンフ	ル個数	

違いが認められる。

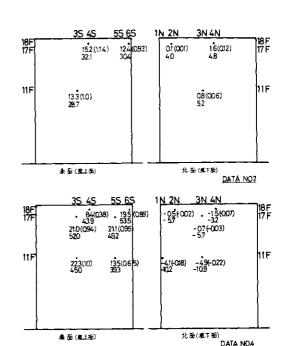
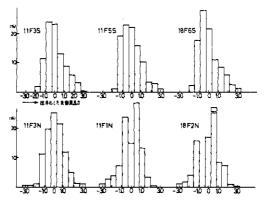

(2) 風圧分布

表-1に示した値によつて風圧分布を立体的に 図示すると図2-5のようになる。同図の左は風が 風上面にほぼ垂直に当つた場合であり、右は約 45° の角度をもつて当つた場合である。これに よると, 風上面は風下面より風圧力がかなり大き く、建物に加わつている全風圧力の大部分は風上 面に加わつているとみることができる。同図の中 の下段の数値は解析した600秒の記録中の最大 の風圧力を示したものであるが,これを見ると, 平均風圧力に較べて瞬間的には, かなり大きな風 圧力が作用していることが知られる。この場合の 瞬間的な最大の風圧力と平均風圧力との比は、風 上面では2.0~3.0程度であるが、見付面の中央 部よりも端部の方がやや大き目な傾向がわずかに 伺える。風下面の場合も上記の比は、多くの点で 2.0~3.0程度であるが、屋上に近い端部の点に は、平均風圧力が小さいので、かなり大きな値を 示したところもある。

次に風圧力の頻度分布を図ー6に示した。風上および風下面のいずれの面の場合にも一定の分が、型を示さず、正規分布との適合度は良くないが、風圧力は多くの場合、平均値を中心として、はる。図ー7には二次元頻度分布(Two-Dimentional Histogram)を風上および風下面の場合につて、その特徴的なものを示した。これらの図面のによると概してに風上および風下面の風圧力が同時に作用することが多いが、風下面上の2点では、一方の点に大きな風圧力が作用している場合がかなり多いことを示している。


(3) 風圧力の動的な性質

図ー4のような記録を、風向が受圧面に対して、ほど垂直な場合について観察すると、風圧力の波形は、風上面の場合には、50~150秒程度の比較的長い時間間隔で風圧力が全体的に大きの上に更に各種の短い局期が、長い場合に対してが加わつたような波形をしているが、長合な波形的な変動も短い局期の変動も短い局期の変動も短いである。これに対して低地の場合には、激しい短周期成分の変動が少な計りによった。これらのととを次に統計的解析結果によって示す。

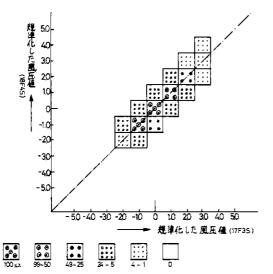
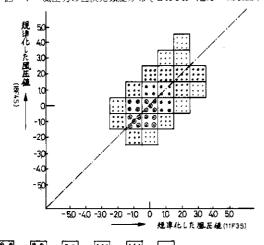
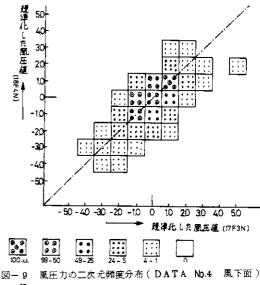

| 上段の敬徳 平均風圧力(物化) 下段の敬徳 最大原圧力(物化) ()独の敬徳 11F35の平均風圧力を基準とした比率

図-5 風圧分布(風向の°及び45°の場合)



図ー6 風圧力の頻度分布(DATA No.4)

図ー11および12は、自己相関係数 R x(r) およびスペクトル密度 S x(r) (附参照)の例として表一1のデータ k 4 の場合について示したものである。 これによると、風上面では、周期性はほとんど認められないのに対し、風下面では、約10~12秒(0.1~0.08 Hz)程度の周期性が認められる。 なお、ここに示さなかった場合も考え合わせると、同一壁面上の受圧面におけるスペクトルは全体的な傾向は似ているが、位置によって、周


風圧力の二次元頻度分布(DATA No.4) 風上面)

風圧力の二次元頻度分布(DATA No.4 風上面) 図-8

波数成分の含まれ方は異っており詳細な動的な性 質は受圧面の位置によってかなり異っていること が推定される。

図-13, 14は, 同一壁面上の2点における 風圧力の間の相互相関係数Rx'y'(で)の例を示し たものであるが、傾向的には風上面の場合には, τ=0秒の附近のところに高い相関を示す傾向が 顕著であるが,風下面の場合には,そういう傾向 は少ない。また図-13.14には $Rx'y(\tau)$ の値を, lag で の関数として表わしたが、ことででが特 定のときの値、例えばで=このときの相互相関係 数 $Rxy(\tau_0)$ を考えると、これは τ の関数ではな く定数であって,2点における風圧力の集合{xi}

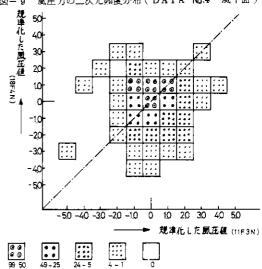


図-10 風圧力の二次元頻度分布(DATA No.4 風下面)

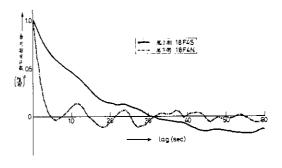


図-11 風圧力の自己相関係数(Data No.4)

99 50

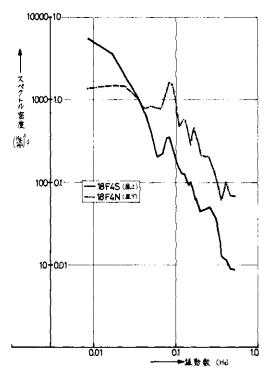


図-12 風圧力のスペクトル密度(DATA No.4)

と $\{y_{i+p}\}$ ($i=1, 2, \dots, p=\frac{\tau_0}{\sqrt{t}}$)との間 の関連性を表わす相関係数でもある。こうした見 方から風上面および風下面の中央部における風圧 力と, それぞれの面上のその他の点における風圧 力との相関性をで=0の場合について相関係数によ って立体的に図示すると図ー15のようになる。 なお、この図では⊙印の位置の風圧力と・印の位 置の風圧力との相関係数を・印の位置に記入した。 図-13~図-15からみると,風上面の場合に は、同時刻における2点の風圧力の間の相関係数 は比較的大きく、 lag で が大きくなるにつれて 相関性は小さくなってゆく傾向が認められる。一 方風下面の場合には2点の風圧力の相関性は余り 高くなく、必ずしも同時刻における相関が一番大 きくはない。この違いは、風上面が自然風の構造 と, また風下面は建物の後流の性質と関係してい ることを示しているものと考えられる。

(4) 風圧と建物の応答

昭和46年9月14日の台風22号の接近時に、 18Fの加速度の測定を行った。その結果は、一般に1次の曲げ振動とねじれ振動が混在し、時折 N-S方向の曲げ振動のみが観測されたが、E-W方向の曲げ振動は観測されなかった。図-16

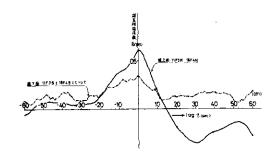


図-13 展圧力の相互相関係数(DATA No.I)

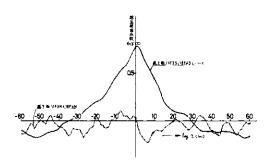
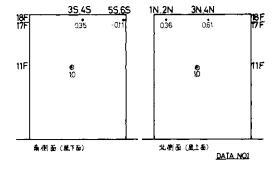



図-14 風圧力の相互相関係数(DATA No.4)

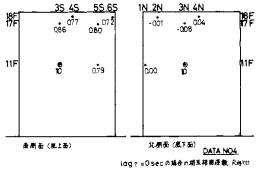


図-15 同-壁面上の2点の風圧力の間の相関性

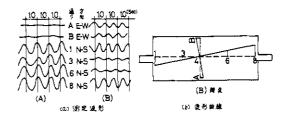


図-16 建物の応答(18Fの加速度,昭和42年台風22号)

の a はその時の加速度波形の一部である。(加速度計は18Fの廊下に設置した。) a 図の①通りと⑧通りが同位相の A 時点の振動周期は約1.1秒,逆位相の B 時点では約0.87秒で振動している。逆位相の場合の18Fの床面の変形状態を加速度が最も大きい時について示すと図ー16-bのようになる。なお,早大が行った強制振動実験によると、この建物の1次国有周期は、N-S方向が1.10秒,E-W方向が0.89秒である。(参考文献1参照)

次に建物に作用する風圧力と建物の変位との同 時測定の結果を示す。測定は、前述の昭和44年 台風 9 号の時で表-1 の Data M6 6 および 7 の時 刻頃に行った。図-17は、同時刻における風圧 力と変位波形の包絡線である。両者の測定波形は ほぼ対応しているが、細部にわたっては多少のずれ がある。これは建物全面で風圧力が一様でなく時 間のずれもありまた建物も瞬間的に風圧力に追従 できないこと等によるものと考えられる。これら の風圧力と変位応答との関連性を調べるために, 頻度分布, 自己相関々数およびスペクトル密度の 比較をしてみる。図-18は17F5Sの風圧力と 18F⑤通りN-S方向の頻度分布であるが,風 圧力の場合は図ー6の場合と同じような傾向であ り、変位応答の場合には、応答に期待されるよう に正規分布に近い。また図ー19および20は、 自己相関関数およびスペクトル密度であるが、い ずれの場合にも風圧力と変位応答とでは傾向的に よく一致している。

3. 風洞実験による風圧測定

(1) 風洞実験の方法

ゲッチンゲン型風洞(気象研究所,吹出口径 1.45 m)により写真-2に示すような1/200の 模型を使用し、層流および乱流格子による3種類 の乱流中における風圧分布を傾斜多管マノメータ

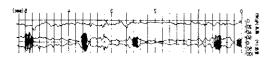
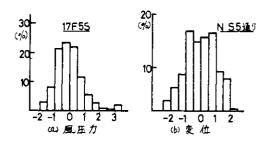
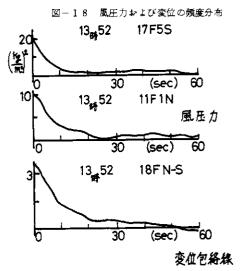




図-17 風圧力と変位応答との同時測定記録

図ー19 風圧力および変位応答の包絡線の自己相関関数

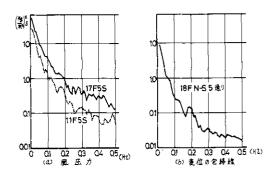


図-20 風圧力および変位応答の包絡線のスペクトル密度

ーによって測定した。使用した乱流格子とそれらによる風の乱れの測定値(熱線風速計による)を表ー2に示す。また模型地面盤上の境界層の高さは層流の場合で10~20mm程度であり、格子のある場合には定常流への遷移が明瞭でないが、ほぼ似たような性状を示すようで、いちじるしい差はない。模型との関係では、ほぼ1階部分が境界層に含まれる部分である。

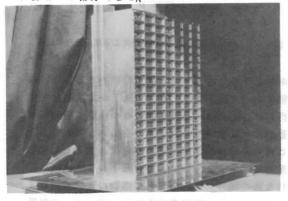


写真-2 風洞実験用模型

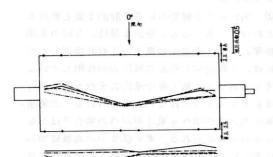


図-21 風圧分布(風向0°11F)

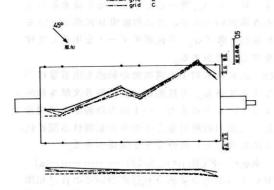


図-22 風圧分布(風向45°11F)

(2) 模型建物の風圧分布

代表例として、11Fにおける0°,45°,,85°,90°の各風向に対する風圧係数の変化を図ー21~24に示す。風向が側面に直角の場合には整流と乱流とで風圧分布に大きな変化はないが、平行の場合は乱流の方が風上に近い方で吸引力が大きく、風下に近い方で吸引力が小さくなった。また柱が壁面より突出している影響が測定値が鋸型を示すな

表-2 乱流格子および乱れの大きさ

格子	格	子の寸	法	乱れの大きき	
J 3	正方形断面 格子の間隔 の一辺の大 M (mm) きさb(mm)		b / M	√ u ² U	
Α	15	105	0.1 4 3	0.068	
В	20	120	0.1 6 7	0.0 6 5	
С	30	175	0.171	0.092	
なし	-	-	Mary Day	0.011	

註1. 格子から模型中心位置までの距離は約1.5 ml

註 2. 風速の瞬間値 U(t)を $U(t) = \overline{U} + u(t)$ とする

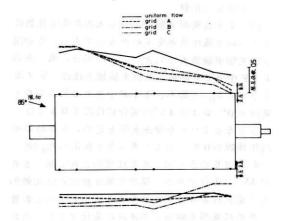


図-23 風圧分布(風向85°11F)

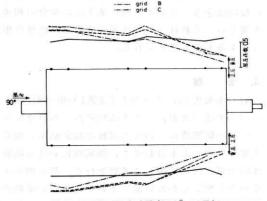


図-24 風圧分布(風向90°11F)

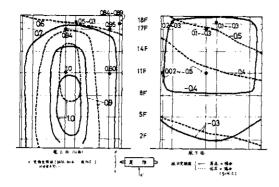


図-25 実物実験および風洞実験による風圧分布の比較 (風向0°)

どに表われている。正圧の最大値は測定面と正対 するとき中央部分に,負圧の最大値は,風が測定 面に5°の角度で当る場合に風上隅角部に表われ ているが,これらの最大値は格子の有無による差 はあまりない。

(3) 実物実験値および模型実験値にもとづく風圧分布の比較

図-25は風洞実験によって求めた風圧係数に もとづいて風圧分布を求めたものである。 この図 中に実物実験値も示したが、この場合、風上面の 11F中央で実測値が風洞実験値とほぼ一致する ようにした。(即ち、11F中央での風力係数が 風向が0° および45°の場合にほぼ1.0 および 0.5となるように基準速度圧を定め、実測時の室 内圧係数が0.2~-0.2であったと仮定した。)図 -25,26 のうち図-25 は風向が 0° , 図-26は45°の場合である。模型の風圧測定点は比較的 粗く更に柱および梁が壁面より突出している影響 のために風洞実験値が不連続に変化するところが あり、かなり粗っぽくまとめた。図-25,26に よると実物実験結果と模型実験結果とは風圧分布 の傾向は余り一致せず, 特に風下面の場合の相違 が著しい。これは、一つは鉛直分布地は後流の相 違によるものと考えられる。

4. 考 察

(1) 本報告では、早大理工学部第1号館の風圧性状について述べたが、ここでは別に行った日立エレベーター研究塔についての同種の測定結果(参考文献 2 参照)とも合わせて、強風時における高層建物の風圧性状に関して考察を行う。測定例が少ないので断定しがたい面が多いが、2 つの建物の*実物建物における測定風圧力は風力係数に対応しているもの。

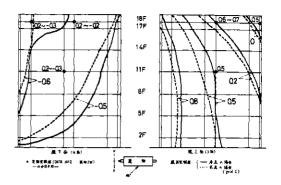


図-26 実物実験および風洞実験による風圧分布の比較 (風向45°)

実測結果から考えられる最も特徴的なことは、建物に加わる風圧力は、風上、風下および風向に平行の8つの各面に分けた場合その性質が静的にも動的にもはっきりと異っているということである。これらの相違は、風上面の場合は、主として変動風速に関係するものであり、風下および風向に平行な面の場合には、主として建物の後流に関係するものであるように考えられる。従って、自然風中の建物に加わる風圧性状は、風向の変動に大きく左右される。

(3) 次に風に対する構造物の動的な応答量について考えてみる。不規振動理論(参考文献 4 参照)によると、n ケの入力——1 出力の線形系の場合には、入出力の統計量とその系の動特性の間には、形式的に書くと、次のような関係がある。

 $R\eta(\tau) = F(Rij(\tau), k(t))$ ………(a) $R\eta(\tau)$;出力の変動分 $\eta(t)$ についての自己相関

出数

Rij(*);入力 x_i(t) と x_j(t) の変動分について の相互相関関数

k(t) ;系のインパルス応答関数 これは、時間領域における関係式であり、Rn(t) からは応答量の標準偏差を求めることができ、 Rn(t) をフーリェ変換すれば応答量のスペクト ル密度を求めることができる。即ち(a)の関係を周 波数の領域の関係に書きかえると、

Sη(f)=F(Sij(f),k(f)).....(b)
Sη(f); 出力の変動分η(t)のスペクトル密度
Sij(f); 入力 x_i(t)と x_j(t)の変動分についての
相互スペクトル密度関数

k(f) ; k(t)をフーリェ変換したもの ここでは上の関係式から、風に対する建物の動的 応答量と風圧力の情報量との関係を原理的に見る ことによって、風応答の動的な解析のための風圧 力に関する必要な情報量およびその追求方法につ いて考えてみる。

(a), (b)等の関係式をみると,動的応答量に関係 する風圧力の統計量としては、相互相関関数或は相 互スペクトル密度,とくに相互相関関数が,本質 的に必要な量であると考えられる。一方実測デー ターについて解析した相互相関関数(本報告では 相互相関係数として表現した)を見ると、詳細な 様子は, 測定時刻や, その時の風の状態(特に風 向の変化)などによって、かなり異なると考えら れるが、一定の条件のもとに得られる多数のそれ らの統計量を検討すれば各条件下で大局的には一 定の傾向があるように予測される。そして、もし このことが可能であるならば,次の問題は,①考 えるべき風速等の気象条件を設定することと、② その条件下における相互相関関数等の統計量の一 定の傾向を求めることである。しかし、考えられ る数多くの受圧面に関する相互相関関数の数は非 常に多いのでこれをすべて実測によって追求する ことは、ほとんど不可能に近い。しかしながら前 者の①については,風速の観測資料にもとづいて 考えるべきであるし、後者の②については、建築 工学の立場から考える必要がある。今回の実測デ ーターの解析結果をみると, 風上面の場合でも, 風圧変動は風速の詳細な変動とはそれほど大きな 関連性がなく、それよりも風向の変化の影響の方 が大きいと考えられること。 また, 特に, 風下面 および風向に平行な面の場合には、風圧変動は、

風速の変動よりも建物の形状や受圧面の位置および風向の変化等に大きな関係があるように考えられること等の点からみて、建物の動的応答に関係する風圧力の統計量としての相互相関関数等の本質的な把握は、大局的に行うのがよいのではないかと考えられ、そしてそれは風洞実験によって求められる可能性もあり、またそれが有効な方法ではないかと考えられる。

別な見方からすると、最近各所で、風荷重を対象とした実物実験が行われるようになってきているが、建物の立地条件や使用上等の制約のため、解析上必要とするデーターを充分に集めることとは非常に難かしい。自然風を対象としているために実際の建物における測定が現段階ではなお必要であるが、これと共に、自然風の構造をシュートすることのできる風洞実験技術の開発を早急に行う必要性を感する。

附 各種統計量の数値計算について

2.2で示した各種統計量は、主として参考文献 3 にもとづいて行った。自己相関関数、相互相関係数、スペクトル密度および相互スペクトル密度 等の計算は、サンプリングして得たもとのデータ x_i について行った。このとき、もとのデータ x_i についての自己相関係数 Rx(t) や相互相関係数 Rxy(t) と x_i 等についての Rx'(t) や Rx'y'(t) と の間には、次の関係がある。

$$R_{\mathbf{X}\mathbf{Y}}(\tau) = \frac{(\overline{\mathbf{x}})^2 + S_{\mathbf{X}}^2 \cdot R_{\mathbf{X}'}(\tau)}{x^2}$$

$$R_{\mathbf{X}\mathbf{Y}}(\tau) = \frac{\overline{\mathbf{x}} \cdot \overline{\mathbf{y}} + S_{\mathbf{X}} \cdot S_{\mathbf{Y}} \cdot R_{\mathbf{X}'} \cdot \mathbf{y}'(\tau)}{\sqrt{\overline{\mathbf{x}}^2 \cdot \overline{\mathbf{y}}^2}}$$

ここでSx2およびSy2は分散とする。

参考文献

- 1. 風間了地(1970):強風時の早大理工学部1 号館の応答実測とその解析,構造物の耐風性 に関する第1回シンボジューム論文集, 281-287頁
- 中原満雄他(1970):強風時における塔状建物壁面の風圧性状,日本建築学会学術講演会梗概集(構造系)287-288頁
 - J.S. Bendat (1966): Measurement and Analysis of Random Data,
 - S.H. Crandall (1963): Random Vibration in Mechanical Systems

^{*} ここでは、平均的な主風向の変化のことを意味する。これに対し風向の変動は主風向を中心とした風向の変動を意味する。