2011 年東北地方太平洋沖地震の震源破壊過程

鈴木 亘*·青井 真*·関口春子**·切刀 卓*

Source Rupture Process of the 2011 off the Pacific Coast of Tohoku Earthquake Derived from Strong-Motion Records

Wataru SUZUKI*, Shin AOI*, Haruko SEKIGUCHI**, and Takashi KUNUGI*

*Monitoring and Forecast Research Department, Earthquake and Volcano Research Unit, National Research Institute for Earth Science and Disaster Prevention, Japan wsuzuki@bosai.go.jp, aoi@bosai.go.jp, kunugi@bosai.go.jp
**Research Division of Disaster Management for Safe and Secure Society, Disaster Prevention Research Institute, Kyoto University, Japan sekiguchi.haruko.6u@kyoto-u.ac.jp

Abstract

We derive the source rupture process of the 2011 off the Pacific coast of Tohoku Earthquake from waveform inversion using the strong-motion data observed by K-NET and KiK-net. Total slip distribution shows one prominent large slip area, which extends from the area around the hypocenter to the shallow part of the fault along the trench axis, with a maximum slip of 48 m. The main rupture of this area started 60 s after the initial break and continued for longer than 40 s, generating the very-low-frequency seismic waves. The area between the hypocenter and the coastline has a slip greater than 5 m. This deeper area experienced two down-dip rupture events, which seem to contribute to the two distinct acceleration wave groups observed at northern part of source area. The rupture after 100 s propagated southward, generating the distinct phase for the southern stations. The shallow large slip is considered to be responsible for devastating tsunami and wide expanse of the rupture area resulted in large ground motions across broad regions of eastern Japan.

Key words: 2011 off the Pacific coast of Tohoku Earthquake, 2011 Tohoku-Oki Earthquake, Source rupture process, Waveform inversion, Strong motions

1. はじめに

平成23年(2011年)3月11日14時46分に、宮城県の 沖合(気象庁による区分では三陸沖)を震源とする日本の 観測史上最大の東北地方太平洋沖地震が発生した.気象 庁が発表したマグニチュードはモーメントマグニチュー ド(Mw)に基づく9.0であり、Global CMT Project¹⁾の決定 した Mwは9.1に達する.メカニズム解は西に低角に傾 斜する節面を持ち、本震後1日間の地震分布は南北方向 に岩手県沖から茨城県沖にかけての約500 km、東西方向 に日本海溝の海溝軸から本州太平洋側の海岸線にかけて の約200 km にわたって広がる.これらの観測事実は本地 震が沈み込む太平洋プレートと陸側のユーラシアプレー トとの境界面が破壊した沈み込み帯巨大地震(mega-thrust earthquake)であることを意味している.この巨大地震に 伴い遡上高が20mを超える地域が南北290kmにも及び, 最大遡上高は40mに達する非常に巨大な津波が太平洋沿 岸を襲い²⁾,特に岩手,宮城,福島の3県について甚大 な人的,物的被害をもたらした.また宮城県から茨城県 にかけての南北約300kmにわたって,震度6強以上の非 常に強い揺れが観測された.強い揺れは福島県中通りや 栃木県など内陸部でも観測されており,地震動による被 害も広範な領域に及ぶ.これらの強震動の特徴について

*独立行政法人 防災科学技術研究所 観測・予測研究領域 地震・火山防災研究ユニット **京都大学防災研究所 社会防災研究部門

- 図1 マルチタイムウィンドウ線形波形インバージョン法に おける震源過程離散化の概念図
- Fig. 1 Schematic illustration of the multi-time-window linear waveform inversion method.

は主要災害調査本号の切刀ほか(2012)³⁾および日本地震学 会論文誌特集号の青井ほか(2012)⁴⁾にまとめられている. 被害地震の発生メカニズムとそれに伴う地震動や津波の 励起を理解するためには、その地震の震源破壊過程を知 ることが重要である.特に、震源に近い領域でも振り切 れることなく観測された強震記録を用いることで、時空 間的に詳細な震源過程の解明につながる.本稿では、防 災科学技術研究所(防災科研)の強震観測網 K-NET と KiKnet で得られた強震記録を用いて 2011 年東北地方太平洋 沖地震の震源破壊過程を推定した結果⁵⁾について報告す る.

2. 震源過程逆解析手法

2.1 手法の概略

弾性体中の断層のすべりにより生成される地震波は、 断層面上の各点についてすべり速度の時間履歴S(t)と単 位すべり速度に対する応答波形G(t)(グリーン関数)をた たみ込み、それを断層面全体について積分することで表 現できる⁶⁾.これは地震波形を求める順方向の計算の説 明であるが、グリーン関数G(t)を既知とすると観測され た地震波形から断層面上のすべり速度の時空間分布を推 定する逆解析(インバージョン)が可能である。本研究で はマルチタイムウィンドウ線型波形インバージョン法^{7),8)} を用いて震源過程の推定を行う.この手法では図1のよ うに断層面を小断層に分割し、すべり速度関数を Δt ずつ ずらした基底関数Q(t)で表現することにより、震源過程 を時空間的に離散化する。このときある観測点で得られ る地震波形U(t)は各基底関数の重みをmとして式(1)で

- 図2 震源過程解析に用いた断層面(桃色の矩形)と強震観測 点(▲:K-NET、▲:KiK-net). 星印と灰色の丸はそ れぞれ本震と本震以降の24時間以内に発生した地震 の震央を示す.また、本震後1時間以内に発生した3 つのM7クラスの地震について、震央とF-netモーメ ントテンソル解を示す.
- Fig. 2 Fault model (pink rectangle) and strong-motion observation stations (▲: K-NET, ▲: KiK-net) used in the source inversion analysis. A star and gray circles indicate the epicenters of the mainshock and the earthquakes that occurred within 24 hours following the mainshock. Epicenters and F-net moment tensor soulutions of three M7-class earthquakes within the day are also shown.

表される.

$$U(t) = \sum_{if}^{N_f} \sum_{ir}^{2} \sum_{ir}^{2} m_{if,it,ir} \Omega(t - t_{trig} - \Delta t(it - 1)) * G_{if,ir}(t)$$
(1)

ただし, *if* (= 1,…, *Nf*), *it* (= 1,…, *Nt*), *ir* (= 1, 2)はそれぞ れ小断層,基底関数(時間窓),面上のすべり方向2成分 についての添字である.複数の観測波形記録に対して式 (1)を連立して得られる式(2)の線型方程式を*m*について 解くことにより,すべり速度の時空間発展で描写された 震源過程を推定することができる.

$$\begin{pmatrix} G\\\lambda S \end{pmatrix} m = \begin{pmatrix} U\\0 \end{pmatrix}$$
(2)

ここでGはG(t)にQ(t)をたたみ込んだ関数からなる行列, S,入は逆問題の安定化のために課したモデルパラメー ターの平滑化条件を表す行列およびその強さを制御する スカラー量であり、本研究ではSekiguchi et al. (2000)⁹⁾の 導入した時空間的な平滑化を行う.またG,Uは各観測 点について3成分の観測波形最大値で正規化する.もう1 つの安定化条件として、式(2)を解く際に非負の最小二乗 法¹⁰⁾を用いてすべり方向を制限する条件をつける.式(1) において1つ目の時間窓がトリガーされる時刻 t_{tris}は、破 壊開始点から Vr で伝播する速度(第1タイムウィンドウト リガリング速度)により規定される時刻とする.

2.2 断層面モデル

本地震は太平洋プレートと陸側のプレートとの境界で 発生した地震のため,沈み込む太平洋プレートの上面形 状¹¹⁾を矩形平面で近似するように図2に示す断層面モデ ルを設定した.この走向は195度,傾斜は13度であり, 本震後1日間の地震分布より長さ(走向方向)を510km, 幅(傾斜方向)を210kmとした.破壊開始点はHi-netおよ び気象庁の震源情報を参照して北緯38.10度,東経142.85 度,深さ24kmとした.断層面の地表投影は海溝軸から 東北地方太平洋岸の海岸線付近に及び,上端の深さは7.1 km,下端の深さは54.4kmとなる.本震の22分後の15 時8分に岩手県沖でMw7.4の逆断層型の地震が,29分後 の15時15分には茨城県沖でMw7.8の同じく逆断層型の 地震が発生しており,断層面の南端と北端でM7を超える 規模の大きなプレート境界型と考えられる余震が発生し ている.

2.3 強震データ

震源過程解析に強震記録を用いた観測点は、図2に示 す K-NET 10 点, KiK-net 26 点, 合計 36 点で, 主に断層 面の走向方向に沿って東北から関東地方の太平洋側に50 km 程度の間隔で分布している.また日本海側に位置する 観測点もいくつか利用して、射出角の変化による東西方 向の解像度の改善を図っている. 震央距離は 120 km か ら400 km であり, M7 クラスの地震からすると非常に大 きいが、本地震に対しては断層面の広がりの範囲内であ り、断層に近い観測点を使用していると考えることがで きる. 解析に用いた波形は, 100 Hz サンプリングの加速 度波形にバンドパスフィルタをかけ積分して得られた0.01 -0.125 Hz (8-100 秒)の速度波形を1 Hz にリサンプリン グしたものである. KiK-net 観測点では地中地震計(深さ は表1に示す)で観測された記録を用いた.S波の到達10 秒前から表1に示す長さの記録を切り出した.S波の到達 時は、目視で読み取った P 波到達時から計算される理論 走時や,インバージョンに用いない観測点も含めて隣り 合う観測点同士の波形を比べるなどして, 目視により決 定した. K-NET, KiK-net の強震データファイルは1 地震 につき 300 秒間であり、S/N 比の良好な観測記録について は記録の終了付近まで解析区間としており、最長の記録 で解析区間長は280秒間となる.

2.4 グリーン関数

グリーン関数は1次元水平成層の地下構造モデルによ

り,離散化波数積分法¹²⁾と反射・透過係数行列法¹³⁾を用 いて計算した.またSekiguchi *et al.* (2002)¹⁴⁾の手法に従い, 小断層内部の破壊伝播の効果をたたみ込んだ.各観測点 での地下構造モデルは,浅部は防災科研が各観測点で行っ た速度検層結果および強震動予測のための3次元深部地 盤構造¹⁵⁾に基づき,地震基盤以深には藤原ほか(2009)¹⁵⁾ が関東,東海地域の震源決定用の構造¹⁶⁾を参照して構築 したモデルを使用している.

表1 解析に用いた強震記録の情報

 Table 1
 Information of strong-motion data used in the source inversion analysis.

観測点	観測点名	地震計	解析
		(茶さ	区间長
AOMH06	Kik-net ハケ別	100 m	260 秒
AOMH13	KiK-net 八户	150 m	265 秒
AOMH15	KiK-net 大鰐	100 m	265 秒
IWTH01	KiK-net 二户東	200 m	270 秒
IWTH08	KiK-net 久慈北	100 m	270 秒
IWTH14	KiK-net 田老	100 m	275 秒
IWT018	K-NET 盛尚	地表	240秒
IWTH21	KiK-net 山田	100 m	275 秒
IWT007	K-NET 釜石	地表	280 秒
IWTH04	KiK-net 住田	106 m	275 秒
AKTH15	KiK-net 協和	100 m	265 秒
AKTH19	KiK-net 湯沢	180 m	275 秒
MYGH04	KiK-net 東和	100 m	275 秒
MYGH12	KiK-net 志津川	102 m	280 秒
MYG011	K-NET 牡鹿	地表	260 秒
MYG014	K-NET 作並	地表	280 秒
MYGH08	KiK-net 岩沼	100 m	275 秒
YMT005	K-NET 肘折	地表	275 秒
YMTH04	KiK-net 上山	100 m	275 秒
FKS004	K-NET 飯舘	地表	230 秒
FKSH02	KiK-net 熱塩加納	100 m	280 秒
FKSH19	KiK-net 都路	100 m	275 秒
FKSH09	KiK-net 郡山	200 m	275 秒
FKS013	K-NET 古殿	地表	250 秒
FKSH14	KiK-net いわき東	147 m	275 秒
FKSH06	KiK-net 伊南	100 m	270 秒
IBR002	K-NET 高萩	地表	225 秒
IBRH18	KiK-net ひたちなか	504 m	275 秒
IBRH19	KiK-net つくば	210 m	270 秒
IBR018	K-NET 鹿嶋	地表	275 秒
TCGH13	KiK-net 馬頭	140 m	270 秒
TCGH14	KiK-net 粟野	100 m	265 秒
CHB006	K-NET 成田	地表	280 秒
CHBH14	KiK-net 銚子中	525 m	270 秒
CHBH10	KiK-net 千葉	2000 m	265 秒
CHBH17	KiK-net 勝浦東	822 m	265 秒

- 図3 最終すべり分布の地表投影. 矢印の方向は断層面上盤 側のすべりの方向を示す. コンター間隔は5m. 星印 は破壊開始点を示す.
- Fig. 3 Slip distribution projected on the map. The direction of the arrows indicates the slip direction of the hanging wall side. Contour interval is 5 m. A star indicates the rupture starting point.

2.5 解析条件

図1に示す矩形断層面モデルを一辺30kmの正方形の 小断層で走向方向17個,傾斜方向7個の計119個に分 割した.各小断層のすべり速度関数は6秒幅のSmoothed Ramp 関数の微分¹²⁾を3秒ずつずらし25個並べて表現し た.これにより各小断層は t_{rrig} の後78秒間すべることが できる. Vrは1.2 km/sから0.2 km/s刻みで4.4 km/sまで 変えてインバージョンを行った.各小断層,各時刻のす べり方向の変化は,純粋な逆断層のすべり角である90度 の片側45度以内に収めた.Vrの値を変えて逆問題を解き, 残差を最小とするものを最適解とする.式(2)における平 滑化Sの強さ入は,推定された地震モーメントの大きさ を考慮して決定した.

3. 結果

Vrが3.2 km/sのとき残差を最小とする震源モデルが得られた.推定された最終すべり量分布の地表投影を図3

図4 10秒ごとのすべり量分布で示す破壊進展過程.コン ター間隔は1m. 星印は破壊開始点を示す.

Fig. 4 Slip progression in terms of slip amount for every 10 s. Contour interval is 1 m. A star indicates the rupture starting point.

に示す. 20 m 以上の大きいすべりが生じた領域は,破壊開始点から断層面浅部の海溝軸に沿って,岩手県南部,宮城県,福島県北部の沖合に広がっている.破壊開始点の東約 60 km の小断層で最大すべり量 48 m が推定された.断層面全体から解放された地震モーメントは 4.42 \times 10²² Nm (M_w 9.0)であり,平均すべり量は 20 m である.本州の海岸線に近い領域では比較的すべり量が小さいが,宮城県沖では海岸線付近でも 5 m を超えるすべりが生じている.

図4は10秒ごとのすべり量を描くことにより、破壊の 進展過程を示している.星印で示す破壊開始点から始まっ たすべりは徐々に広がり、破壊開始から20秒後(以後、

図5 断層面全体でのモーメント時間関数 Fig.5 Total moment rate function.

- 図6 各小断層におけるすべり速度時間関数. 星印は破壊開 始の小断層を示す. 最終すべり量を背景に示す(コン ター間隔5m).
- **Fig. 6** Slip-velocity time function of each subfault. A star indicates the subfault in which the rupture initiated. Total slip distribution is drawn in the background, contour interval of which is 5 m.

- 図7 観測波形(黒線)と推定された震源過程より計算される波形(赤線)の比較.各波形右上の数字は最大値を示す.
- Fig. 7 Comparison between the observed waveforms (black) and waveforms synthesized from the derived source process (red). Maximum values are indicated upper right of each trace.

本稿では簡単のため「破壊開始から X 秒後」を「X 秒後」と 表す)にすべりは破壊開始点の周辺から宮城県はるか沖の 断層最浅部に達している. その後 50 秒後までは, 宮城県 沖深部に進展する破壊と海溝軸に沿って北部へと伝播す る破壊が見られる.50秒後には海溝軸に沿ってすべりが 見られ、60秒後以降は40秒以上にわたり、大きなすべり が岩手県南部から福島県北部沖の海溝軸に沿って生じて いる. また宮城県沖の深い領域に伝播する破壊も見られ る. 100 秒後以降は福島県沖から茨城県沖にかけて、南部 に向かう破壊が見られる. 断層面全体での地震モーメン トの解放履歴(図5)を見ると、20秒後にやや大きめのモー メント解放が始まり 50 秒後まで継続する.50-60 秒後か らより大きなモーメント解放へと転じ,80秒後前後で最 大となり. 100-110秒後で急激に解放量は減少する. そ の後は緩やかに減少して、150秒後程度で全体のモーメン ト解放が終了する. ピークとなる 80 秒後前後では, 宮城 県沖を中心として破壊開始点から海溝軸にかけて長時間 続く大すべりと、深い領域に伝播する破壊があり(図4)、 広大な領域ですべりが生じている.図6は各小断層にお けるすべり速度時間関数を t_{trig} を先頭として描いている. 宮城県沖の領域では時間関数に2つのピークが見られ, 図4に見られるように破壊開始からこの領域での破壊方 向が複雑に変化していることに対応している.大すべり を生じた宮城県はるか沖の断層面浅部では長時間のすべ りの継続が見られ、最大すべり速度は1.8 m/sに達する.

図7はインバージョンに用いた観測点における観測波 形と得られた震源モデルから再現された波形の比較を示 す.すべての観測点において波形の一致はよい. 4. 議論

4.1 解析条件設定

本研究で用いた周波数帯域は 0.01 - 0.125 Hz と, 強震 記録を用いた震源過程解析としては非常に低い帯域であ る. 高周波側の上限 0.125 Hz は、解析データに含まれる 最短の波長が小断層の一辺の長さ30kmと同程度となる ように決定した. M9の巨大地震ということで、宮城県の 観測点での東西成分には継続時間 30 秒以上の大振幅のパ ルスが存在する(図7)など、観測波形には低周波数の成分 が明瞭に見られる.低周波数側の下限を 0.02 Hz と高くし た 0.02 - 0.125 Hz の強震波形を用いて推定された最終す べり分布と破壊進展過程を図8に示す.大きなすべりの 領域が破壊開始点から海溝軸にかけて広がることや、そ の大すべりが60秒後から100秒後で生じていることなど, 大局的な特徴は 0.01 - 0.125 Hz のデータを用いた結果と 同様である.違いはすべりの大きさに見られ、宮城県は るか沖の海溝軸付近に推定された最大すべり量は33mと 70%弱の大きさであり、時間進展でも断層面浅部のすべ りが最大となる 70-80 秒後でのすべり量は 60% 程度と 0.02 - 0.125 Hz のデータを用いた結果は小さい. このよう に解析結果に有意な差が生じるほどに、非常に低周波数 成分に富む地震波が放射されていることが分かる.

図4および図6が示すように、長時間のすべりが発生 したり、同じもしくは近接した領域ですべりが繰り返し たりと、本地震の破壊の時間進展は単純ではない.この 破壊過程を表現するために、本研究では*trig*後78秒と長 時間のすべりを可能にしている.それでもすべり継続時 間が若干不足気味に見える領域も存在する.比較のため に93秒間のすべりを許した解析を行ったところ、破壊開

図8 0.02-0.125 Hz の強震記録を用いた解析より推定された(a) 最終すべり分布(コンター間隔5m) および(b) 破壊進展過程(コンター間隔1m). 星印は破壊開始点を示す.

Fig. 8 (a) Total slip distribution (contour interval of 5 m) and (b) rupture progression process (contour interval of 1 m) derived from the source inversion analysis using the strong-motion records band-pass filtered between 0.02 and 0.125 Hz. A star indicates the rupture starting point.

始点より浅部のすべりの大きな領域ではすべりの継続時間は78秒の解析結果と大きくは変わらないことが確認された.破壊開始点付近は若干すべり継続時間が短いものの、インバージョンの安定性も考慮すると、78秒のすべりを許す解析がより適切であると考えられる.

4.2 すべり分布の特徴

強震波形記録を用いた震源過程解析は、他のデータと 合わせたジョイントインバージョンによる研究と合わ せると、2011年10月までに著者らの研究⁵⁾以外に4論 文^{17), 18), 19), 20)}が国際誌で出版されており、すべてが K-NETもしくは KiK-net での観測記録を使用している. 最大すべりの大きさにばらつきは見られるものの,これ らの多く^{18),19),20)}で本研究と同様に破壊開始点から海溝 軸にかけてすべりの大きい領域が推定されている. また この領域での主要な破壊が60秒後以降に生じている点も 共通している. 強震観測点は陸上にのみ存在して南北方 向に分布するため,東西方向のすべり分布の解像度は走 向に沿う南北方向の分布に比べて高くはない. しかしな がら海底地殻変動の直接観測からも, 宮城県沖の海溝軸 付近に大きなすべりが推定されており²¹⁾,本研究結果と 整合的である. また観測点の方位角分布が良好な遠地波 形を用いた研究^{22),23),24),25)} でも破壊開始点から浅い領 域にすべりの大きい領域が推定されており、断層面を囲 んで分布する津波計のデータを用いて推定されたすべり 分布^{26),27)}は特に断層面の最も浅い領域でのすべりが最 大となっている. 津波データに基づく結果と整合的であ ることから、本研究で得られた岩手県南部、宮城県、福 島県北部はるか沖合の断層面浅部の領域での大きなすべ りが、太平洋沿岸に甚大な被害をもたらした津波を発生 させたと考えられる.本研究で推定された断層面浅部の すべり方向には,最大すべりを中心として放射状に広がっ ている特徴が見られる(図3).このようなすべり分布は、 国土地理院の GPS 観測網による1Hz サンプリング時系列 データを用いた震源過程解析²⁸⁾からも得られている.定 性的な解釈となるが、最も大きくすべった領域により近 接する領域が引きずられたことにより、放射状のすべり 方向分布となったのかもしれない.

4.3 地震波放射特性

図9はK-NET およびKiK-net で観測された加速度波形 を南北に並べたペーストアップ図を示す.宮城県を中心 として南北に伝播する顕著な波群が40秒ほどの間隔をお いて2つ見られ,宮城県沖にこれらの波群の励起源の存 在が推定される.また福島県南部から茨城県の観測点で は、上述の宮城県沖由来と考えられる波群の後ろに、よ り大きな波群が特に南部に強く伝播していく様子が見ら れる.これら3つの大振幅の波群により、広い範囲にわ たり強い揺れがもたらされた.

時空間的に不均質な破壊過程と地震波放射過程の関係 について検討する.図10は破壊進展に見られる顕著な破 壊イベントがインバージョンに用いた0.01-0.125 Hzの周 波数帯域の速度波形にいかに寄与したかを示す.また背 景には加速度波形も示している.青色で示す20-50秒後

- 図9 K-NET および KiK-net の地表地震計で観測された加速 度波形東西成分のペーストアップ図.各波形はそれぞ れの最大値で正規化されている.3つの顕著な波群を 灰色の帯で示す.左図の星印は震央を,▲は波形を用 いた強震観測点を示す.
- Fig. 9 Record section of the normalized acceleration waveforms for EW component observed at surface seismometers of K-NET and KiK-net. Three distinctive wave groups are indicated by gray curves. A star and triangles in the left panel indicate the epicenter and the strong-motion observation stations, respectively.

の破壊開始点から海岸線にかけての宮城県沖で発生した 破壊イベントにより,宮城県や福島県北部の観測点にお ける初めの大きなフェイズが生成されている.これらの フェイズの出現時刻は加速度波形の1つ目の大きな波群 と対応している.この破壊領域中,最も破壊開始点(震源) に近い小断層をこの破壊イベントの想定開始点とみなし, ここから20秒後に放射されたS波の到達時を示す青の縦 線は,1つ目の加速度波群の立ち上がりにおよそ位置して いることが分かる.これらから宮城県から広がる1つ目 の加速度波群は,宮城県沖の破壊開始点と海岸線の間の 領域から放射されていることが示唆される.

次いで赤色で示す 60 秒後から 100 秒後の断層面浅部で 発生した大きいすべりを伴う破壊イベントを見ると,こ のイベントは岩手県や宮城県の速度波形に見られる大振 幅のフェイズの一部を生成している.また 4.1 節の 0.02-0.125 Hz の強震データを用いた解析結果より,この破壊イ ベントは非常に低周波数帯域に寄与していることが示唆 されるが,実際に非常にゆっくりとした変動をする低周 波数成分に富んだ波形が生成されていることが確認でき る. 60 秒後から 100 秒後には緑色で示す宮城県沖の深い 領域に進展する破壊イベントも見られ,このイベントも

図10 (a) 推定された破壊進展過程に見られる顕著な破壊イベントと(b) それによる速度波形(0.01-0.125 Hz)への寄与.(a)と(b) の色が対応しており,(b)の縦棒は(a)の×で示す各破壊イベントの想定開始点からのS 波の到達時を示す.また速度波形の背景に,灰色で加速度波形を示している.(a)の星印は破壊開始点を示す.

Fig. 10 (a) Distinct rupture events in the rupture progression process. A star indicates the rupture starting point. (b) Contribution from the distinct rupture events to the 0.01-0.125 Hz velocity waveform synthesis. Bars indicate the S-wave arrival times from the possible initial rupture of the rupture events. Acceleration waveforms are drawn in the background.

上述の速度波形フェイズに寄与しており,また福島県北 部での波形への寄与も大きい.このように宮城県付近で 見られる速度波形の大振幅のフェイズは,60秒後以降の 宮城県沖海溝軸から海岸線までの全体の領域で発生した すべりにより生成されている.このフェイズは加速度波 形に見られる2つ目の波群の到達時とは対応しておらず, 励起源の推測は1つ目の波群ほど単純ではない.60秒後 以降の浅い領域と深い領域での破壊イベントについて想 定開始点からのS波走時を比較すると,深い領域での破 壊イベントの方が2つ目の加速度波群の立ち上がりとの 対応がよく,励起源として可能性が高いことが示唆され る.経験的グリーン関数を用いた0.1–10 Hz の強震波形モ デリング²⁹⁾からも,宮城県を中心として伝播する2つの 加速度波群の励起源が破壊開始点よりも陸よりの宮城県 沖であるという結果が得られている.

紫色で示す100秒後以降の福島県沖から南方に進展す る破壊イベントは福島県南部,茨城県,千葉県の速度波 形において振幅の大きなフェイズを生成している.また このフェイズは,図9に見られる福島県を中心として伝 播し関東地方にかけて強い揺れをもたらした加速度波群 とよく対応している.S波の到達時も100秒後以降の紫色 で示す破壊イベントがこの波群の励起源であることを支 持する.ここまで見てきたように,0.01-0.125 Hzの強震 波形から推定されたすべり分布と顕著な加速度波群の励 起源の対応関係は明快ではなく,本地震の地震波放射の 周波数依存性²³⁾を示している.また宮城県沖から福島県 沖に及ぶ断層面の破壊に伴い,複数の高周波数地震波放 射イベントが生じたことにより,東北地方から関東地方 にかけての広域で強い揺れに見舞われたと考えられる.

5. おわりに

2011年東北地方太平洋沖地震は断層面浅部で最大 50 m 近くに及ぶ大きなすべりが生じたと推定され,これに伴 う大津波は未曽有の大災害を引き起こした.津波被害の ために大きくは目立たず,また 1995年兵庫県南部地震や 2004年新潟県中越地震ほど被害率が高い地域はないもの の,地震動による人的,物的被害も広範に及び総数は多い. このような浅部での大すべりが生じた原因や,破壊が広 域に進展し強い地震波を放射した原因の解明が今後の重 要な課題であり,本研究結果はその第一歩となる.観測 体制の整った中で発生した本地震の豊富な地球物理学的 データを基に,甚大な被害をもたらす海溝型巨大地震の 発生メカニズムの解明とその防災対策への活用を進め, 本震災による犠牲に少しでも報いていきたいと考えてい る.

参考文献

 Nettles, M., Ekstrom, G., and Koss, H. C. (2011): Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks. Earth Planets Space, 63-7, 519–523, doi:10.5047/eps.2011.06.009.

- Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H. (2011): Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophys. Res. Lett., 38-null, L00G14, doi:10.1029/2011GL049210.
- 3) 切刀 卓・青井 真・鈴木 亘・中村洋光・森川信之・藤原広行(2012):2011年東北地方太平洋沖地震の 強震動.防災科学技術研究所主要災害調査, No.48, 63-72.
- 青井 真・切刀 卓・鈴木 亘・森川信之・中村洋光・ 先名重樹・藤原広行(2012);2011年東北地方太平洋 沖地震の強震動. 地震 2,投稿中.
- Suzuki, W., Aoi, S., Sekiguchi, H., and Kunugi, T. (2011): Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys. Res. Lett., **36**-null, L00G16, doi:10.1029/2011 GL049136.
- Aki, K. and Richards, P. G. (2002): Quantitative Seismology, 2 ed., 700pp., University Science Books, California.
- Olson, A. H. and Apsel, R. J. (1982): Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seismol. Soc. Am., 72-6, 1969– 2001.
- Hartzell, S. H. and Heaton, T. H. (1983): Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73-6, 1553–1583.
- Sekiguchi, H., Irikura, K., and Iwata, T. (2000): Fault geometry at the rupture termination of the 1995 Hyogoken Nanbu earthquake. Bull. Seismol. Soc. Am., 90-1, 117–133, doi:10.1785/0119990027.
- 10) Lawson, C. L. and Hanson, R. J. (1974): Solving Least Squares Problems. 340pp., Prentice-Hall, Inc., New Jersey.
- Hasegawa, A., Horiuchi, S., and Umino, N. (1994): Seismic structure of the northeastern Japan convergent margin: A synthesis, J. Geophys. Res., 99-B11, 22295– 22311, doi:10.1029/93JB02797.
- Bouchon, M. (1981): A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am., 71-4, 959–971.
- Kennett, B. L. N. and Kerry, N. J. (1979): Seismic waves in a stratified half space. Geophys. J. R. Astron. Soc., 57, 557–583.
- 14) Sekiguchi, H., Irikura, K., and Iwata, T. (2002): Source inversion for estimating continuous slip distribution on the fault—Introduction of Green's functions convolved with a correction function to give moving dislocation effects in subfaults—. Geophys. J. Int., **150**, 377–391, doi:10.1046/ j.1365-246X.2002.01669.x.
- 15)藤原広行・河合伸一・青井 真・森川信之・先名重樹・ 工藤暢章・大井昌弘・はお憲生・早川 譲・遠山信彦・

松山尚典・岩本鋼司・鈴木晴彦・劉瑛(2009):強震 動評価のための全国深部地盤構造モデル作成手法の検 討.防災科学技術研究所研究資料, No.337.

- 16) 鵜川元雄・石田瑞穂・松村正三・笠原敬司(1984):関東・ 東海地域地震観測網による震源決定法について.国立 防災科学技術センター研究速報,No.53, 1-88.
- Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y., and Okada, T. (2011): A unified source model for the 2011 Tohoku earthquake, Earth Plant. Sci. Lett., **310**-3-4, 480–487, doi:10.1016/j.epsl.2011.09.009.
- Lee, S., Huang, B., Ando, M., Chiu, H., and Wang, J. (2011): Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., **38**-19, L19306, doi:10.1029/2011GL049580.
- Yoshida, K., Miyakoshi, K., and Irikura, K. (2011): Source process of the 2011 off the Pacific coast of Tohoku Earthquake inferred from waveform inversion with longperiod strong-motion records, Earth Planets Space, 63-7, 577–582, doi:10.5047/eps.2011.06.050.
- 20) Yoshida, Y., Ueno, H., Muto, D., and Aoki, S. (2011): Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data, Earth Planets Space, 63-7, 565–569, doi:10.5047/eps.2011.05.011.
- 21) Ito, Y., Tsuji, T., Osada, Y., Kido, M., Inazu, D., Hayashi, Y., Tsushima, H., Hino, R., and Fujimoto H. (2011): Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38-null, L00G05, doi:10.1029/2011GL048355.
- Hayes, G. P. (2011): Rapid source characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63-7, 529–534, doi:10.5047/eps. 2011.05.012.

- 23) Ide, S., Baltay, A., and Beroza, G. C. (2011): Shallow Dynamic Overshoot and Energetic Deep Rupture in the 2011 Mw 9.0 Tohoku-Oki Earthquake, Science, 332-6036, 1426–1429, doi:10.1126/science.1207020.
- 24) Shao, G., Li, X., Ji, C., and Maeda, T. (2011): Focal mechanism and slip history of the 2011 Mw 9.1 off the Pacific coast of Tohoku Earthquake, constrained with teleseismic body and surface waves, Earth Planets Space, 63-7, 559–564, doi:10.5047/eps.2011.06.028.
- 25) Yagi, Y. and Fukahata, Y. (2011): Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release, Earth Planets Space, **38**-19, L19307, doi:10. 1029/2011GL048701.
- 26) Fujii, Y., Satake, K., Sakai, S., Shinohara, M., and Kanazawa, T. (2011): Tsunami source of the 2011 off the Pacific coast of Tohoku, Earthquake, Earth Planets Space, 63-7, 815–820, doi:10.5047/eps.2011.06.010.
- 27) Maeda, T., Furumura, T., Sakai, S., and Shinohara, M. (2011): Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku Earthquake. 63-7, 803–808, doi:10.5047/eps. 2011.06.005.
- 28) Yue, H. and Lay, T. (2011): Inversion of high-rate (1 sps) GPS data for rupture process of the 11 March 2011 Tohoku earthquake (Mw 9.1), Geophys. Res. Lett., 38-null, L00G09, doi:10.1029/2011GL048700.
- 29) Kurahashi, S. and Irikura, K. (2011): Source model for generating strong ground motions during the 2011 off Pacific coast of Tohoku Earthquake, Earth Planets Space, 63-7, 571–576, doi:10.5047/eps.2011.06.044.

(2011年12月1日原稿受付,
2011年12月19日改稿受付,
2011年12月19日原稿受理)

要 旨

2011 年東北地方太平洋沖地震の震源破壊過程を K-NET および KiK-net で観測された強震記録を用いた波形イン バージョンにより推定した.すべりの特に大きい領域は,破壊開始点付近の領域から岩手県南部,宮城県,福島県 北部の沖合,断層面浅部の海溝軸に沿って広がり,最大すべり量 48 m が推定された.この浅いすべり領域では,破 壊開始の 60 秒後から 40 秒以上にわたって大きなすべりを生じ,非常に低周波数成分に富んだ地震波を放射した. 宮城県沖の破壊開始点と海岸線の間の深い領域では,浅い領域と比較すると小さいものの 5 m 以上のすべりが推定 された.この領域では 2 回の深い方向に進展する破壊イベントが見られ,これにより宮城県の観測点を先頭に伝播 する 2 つの大振幅の加速度波群が生成されたと考えられる.100 秒以降の破壊は断層面南部に進展し,南部の領域 に位置する観測点での速度,加速度波形に見られる顕著なフェイズを生成した.浅部の大きなすべりにより甚大な 被害をもたらした巨大津波が発生し,走向方向の広い領域にわたってすべりが生じたことにより東北地方から関東 地方に及ぶ広域が強い地震動に見舞われたと考えられる.

キーワード:平成23年(2011年)東北地方太平洋沖地震,震源破壊過程,波形インバージョン,強震記録